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The transition-metal-mediated {2 2 + 2] cyclocotrimerization
of two alkynes and a nitrile is a powerful and straightforward
route to substituted pyridinég.Especially, catalytic cyclocotri-
merization is undoubtedly desirable as a metal-atom economical
and environmentally benign process. Having improved the chemo-
and regioselectivities, catalytic methods have also been applied
to the practical syntheses of biologically or functionally interesting
molecules’ Surprisingly, such useful catalysis has completely
been confined to cobdltand rhodiur since first reported by
Wakatsuki and Yamazakialthough a variety of transition metals
(Ti,® Ta/ Co! Rh? and NP) have been found to mediate the
stoichiometric cyclocotrimerization. With these facts in mind, we
investigated the first ruthenium(ll)-catalyzed version of this useful
pyridine annulation and found that the cycloaddition of 1,6-diynes
with dicyanides proceeded with the significant chemo- and
regioselectivities under mild conditioA$.
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As an initial attempt, we first examined the reaction of a
symmetrical 1,6-diyne2a with acetonitrile. The ruthenium(ll)
complex, Cp*Ru(cod)ClXa), having both a planar ligand (Cp*
= pentamethylcyclopentadienyl) and a readily leaving ligand (cod
= 1,5-cyclooctadiene), is a catalyst of choice, becalseavas
found to be an efficient catalyst for the cycloaddition of the 1,6-
diynes with alkynes or alkené&® The reaction of2a and
acetonitrile (2 equiv. oRa) in the presence of 1 mol %a at
room temperature, however, only gave a mixture of the diyne
cyclotrimerization product¥: The diyne2a was quantitatively
recovered using acetonitrile as the solvent. In sharp conftast,
reacted with malononitrile3g) (1.5 equiv) in the presence of 2
mol % 1a at room temperature for 26 h to afford the bicyclic
pyridine4ain 72% yields along with the recoverg@a (Scheme
1). It is noteworthy that the undesired cyclotrimerization of the
diyne 2awas completely restrained in the presenc8afAt 60
°C, the diyne2awas completely consumed for 7 h, and the yield
was improved to 91% (Table 1, entry 1). An increased amount
of the catalystla (5 mol %) effectively converte@a into 4a
with an excellent yield (95%) even at room temperature (entry
2). A Ru(lll) complex, [Cp*RuCj], (1b), exhibiting a similar
efficiency in the cycloaddition of 1,6-diynes with alkynes or
heterocycloalkenes was found less effective for the present case
(entry 3). The necessity of a planar supporting ligand was
demonstrated by the reaction using Ry&d)(CHCN), (10),
which gave no cycloadduct in the same reaction conditions. A
Ru(0) complex, (eMeg)Ru(cod) (Ld), also gave no cycloadduct
at all, whereas it has a planar hexamethylbenzene ligand.

In addition to the above terminal diyriga, an internal diyne
2b can also be used to the present cycloaddition. In the presence
of 5 mol % 1a, 2h reacted with3a at 80°C for 20 h to chemo-
selectively afford a bicyclic pyridindb in 70% vyield (entry 4).

As already mentioned, Co catalysts have extensively been used
for the [2+ 2 + 2] pyridine annulatior? The most widely used,
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Table 1. Cp*Ru(cod)CI-Catalyzed Cycloaddition of 1,6-Diynes
2a—g with Dicyanides3a—e

diyne/

cat (mol %)/

product [yield (%)/

entry dicyanide temp./time isomer rati@]
1 2al3a 1a(2)/60°C/7 h 4a[91]
2 2al/3a la(5)/rt/2.5h 4a[95]
3 2al3a 1b(2)/rt/22 h 4a[22]°
4 2b/3a 1a (5)/80°C/20 h 4b [70]
5 2c/3a 1a(2)/60°C/5 h 4c¢[97/95:5]
6 2d/3a 1a(10)/60°C/24 h 4d [78/100:0F
7 2el3a 1a(5)/60°C/5.5 h 4e[92/100:0]
8 2f/3a la(5)/rt/24 h 4f[80/100:0]
9 2g/3a 1a(2)/60°C/16 h 4 g[97/95:5]
10 2h/3a 1a(2)/60°C/0.5 h 4h [95/100:0]
11 2c/3b 1a(2)/60°C/1.5h 4i [73/100:0]
12 2c/3c 1la(5)/rt/22 h 4j [46/100:0]
13 2c¢/3d 1a(2)/60°C/2.5h 4k [88/100:0]
14 2c/3e 1a(2)/60°C/7 h 41 [88/100:0]

aThe isomer ratio was determined By NMR. © The diyne2awas
recovered in 72% The diyne2d was recovered in 11% yield.

readily accessible CpCo(cod) (5 mol %), however, failed to
catalyze the cycloaddition of the diyr2a and the dicyanid@a
at room temperatur®,although it has a similar ligand field with
the ruthenium compleda Another interesting feature of the
present Ru(ll)-catalyzed protocol is that only one of the two cyano
groups in3awas involved in the pyridine-ring formation while
the other remained intact after the complete conversion of the
diyne2a. This is in striking contrast to the CpCo(cod)-catalyzed
cyclocotrimerization of alkynes with dicyanides, which gave both
monopyridines and bipyridiné42The selective formation of the
mono annulation product requires excess dicyanides for the cobal
catalysis'#°

The regiochemistry of the present pyridine synthesis was then
investigated using unsymmetrical 1,6-diyn2es—h having a
variety of terminal substituents and malononitriga) (Scheme
1). As summarized in Table 1, all of the reactions were carried
out under mild conditions (rt or 6TC) to furnish fused pyridines
in good yields with excellent regioselectivity preferable to the

2,3,4,6-substituted isomers over the 2,3,4,5-substituted isomers

In some cases, increased amounts of the catbdysere required
due to the slow reaction rates (entries 6 and 7). A propiolate
derivative2f proved to dimerize more easily than the other diynes,
but the reaction employing 5 mol %a at room temperature
effectively gave rise to a 2-pyridinecarboxylatéas the major
product (entry 8). Moreover, interesting 2,5-dihydrofuran- and
3-pyrroline-fused pyridinedg and4h were effectively assembled
in one step fronBa and an etheRg or a tosylamide2h (entries
9 and 10).

To establish the generality of the observed chemo- and
regioselectivities of our protocol, several other dinitrigis—e
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were then subjected to the catalyzed cycloaddition with the diyne
2c. A tether unit connecting the two cyano groups has a decisive
effect upon the chemoselectivity. Succinonitrilgb) and glu-
taronitrile 3¢), in which the two cyano groups are separated by
two or tree methylene units gadéand4j in 73 and 46% yields,
respectively, along with the concomitant formation of the dimer
of 2b (entries 11 and 12). These results clearly suggest that the
longer tether favored the competitive cyclotrimerization of the
diyne. On the other hand;phthalonitrile @d) and fumaronitrile
(36), in which two cyano groups are connected by a twb-sp
carbon tether, gave better results. The corresponding cycloadducts
4k and 4l were obtained as the sole product both in the higher
yields of 88% thandi (entries 13 and 14).

The synthetic potential of the present protocol was further
demonstrated by the following one-step construction of & 2,2
bipyridine framework (Scheme 2). Recently, Selaal. have
reported the co-catalyzed tandem cycloaddition of 5-hexynenitrile
with 1,3-diynes to give 2,2bipyridines and 2,3bipyridines in
the yields of 9-63% with variable isomer rati8.Interestingly,
in our case, a 1,6,8,13-tetrayBewhich was readily synthesized
from commercial hexa-2,4-diyne-1,6-diol, was reacted with
malononitrile @a) using 10 mol %laat 80°C for 20 h to afford
the desired bipyridin® as the sole product in 95% yield.

Although the present cycloaddition was envisaged to proceed
via the metallacyclopentadiene mechanism, similar to the well-
established mechanism of co-cataly’sike origin of the signifi-
cant chemoselectivity due to the dicyanides has not yet been
clarified. The IR spectra of the 1:1 solutiondand3ain CHCl;
showed a strong band at 1720 cmwhich is typicalzn?-nitrile
absorption'® The two cyano groups iia might be favorable for
the n?-coordination of the cyano group in a bidentate fashion (
in Scheme 1). As a result, the cyclotrimerization of the diynes
was suppressed, and thé-coordination of the cyano moiety
facilitates the insertion of the €N triple bond into ruthenacy-
clopentadienes. Such an assumption, however, cannot be applied
to the dicyanide3e because its cyano groups orienteans to
each other. The elucidation of the detailed reaction mechanism
must wait further study.
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Co vapor and arenes, have also been reported to promote pyridine-annulation
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